Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 35(5-6): 163-176, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38386500

ABSTRACT

Delivering vectorized information into cells with the help of viruses has been of high interest to fundamental and applied science, and bears significant therapeutic promise. Human adenoviruses (HAdVs) have been at the forefront of gene delivery for many years, and the subject of intensive development resulting in several generations of agents, including replication-competent, -defective or retargeted vectors, and recently also helper-dependent (HD), so-called gutless vectors lacking any viral protein coding information. While it is possible to produce HD-AdVs in significant amounts, physical properties of these virus-like particles and their efficiency of transduction have not been addressed. Here, we used single-cell and single virus particle assays to probe the effect of genome length on HAdV-C5 vector transduction. Our results demonstrate that first-generation C5 vectors lacking the E1/E3 regions of the viral genome as well as HD-AdV-C5 particles with a wild type (wt) ∼36 kbp or an undersized double-strand DNA genome are similar to human adenovirus C5 (HAdV-C5) wt regarding attachment to human lung epithelial cells, endocytic uptake, endosome penetration and dependency on the E3 RING ubiquitin ligase Mind Bomb 1 for DNA uncoating at the nuclear pore complex. Atomic force microscopy measurements of single virus particles indicated that small changes in the genome length from 94% to 103% of HAdV-C5 have no major impact on physical and mechanical features of AdV vectors. In contrast, an HD-AdV-C5 with ∼30 kbp genome was slightly stiffer and less heat-resistant than the other particles, despite comparable entry and transduction efficiencies in tissue culture cell lines, including murine alveolar macrophage-like Max-Planck-Institute (MPI)-2 cells. Together, our in vitro studies reinforce the use of HD-AdV vectors for effective single round gene delivery. The results illustrate how physical properties and cell entry behavior of single virus particles can provide functional information for anticipated therapeutic vector applications.


Subject(s)
Adenoviridae , Adenoviruses, Human , Animals , Humans , Mice , Adenoviridae/genetics , Adenoviruses, Human/genetics , Cell Line , Genetic Vectors , DNA
2.
Small ; 20(6): e2304722, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37806749

ABSTRACT

Infection of humans by many viruses is typically initiated by the internalization of a single virion in each of a few susceptible cells. Thus, the outcome of the infection process may depend on stochastic single-molecule events. A crucial process for viral infection, and thus a target for developing antiviral drugs, is the uncoating of the viral genome. Here a force spectroscopy procedure using an atomic force microscope is implemented to study uncoating for individual human rhinovirus particles. Application of an increasing mechanical force on a virion led to a high force-induced structural transition that facilitated extrusion of the viral RNA molecule without loss of capsid integrity. Application of force to virions that h ad previously extruded the RNA, or to RNA-free capsids, led to a lower force-induced event associated with capsid disruption. The kinetic parameters are determined for each reaction. The high-force event is a stochastic process governed by a moderate free energy barrier (≈20 kcal mol-1 ), which results in a heterogeneous population of structurally weakened virions in which different fractions of the RNA molecule are externalized. The effects of antiviral compounds or capsid mutation on the kinetics of this reaction reveal a correlation between the reaction rate and virus infectivity.


Subject(s)
Capsid Proteins , Rhinovirus , Humans , Rhinovirus/genetics , Capsid/chemistry , RNA, Viral/genetics , Antiviral Agents/pharmacology , Virion
3.
Nanoscale Horiz ; 8(12): 1665-1676, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37842804

ABSTRACT

Here we investigate the cargo retention of individual human picobirnavirus (hPBV) virus-like particles (VLPs) which differ in the N-terminal of their capsid protein (CP): (i) hPBV CP contains the full-length CP sequence; (ii) hPBV Δ45-CP lacks the first 45 N-terminal residues; and (iii) hPBV Ht-CP is the full-length CP with a N-terminal 36-residue tag that includes a 6-His segment. Consequently, each VLP variant holds a different interaction with the ssRNA cargo. We used atomic force microscopy (AFM) to induce and monitor the mechanical disassembly of individual hPBV particles. First, while Δ45-CP particles that lack ssRNA allowed a fast tip indentation after breakage, CP and Ht-CP particles that pack heterologous ssRNA showed a slower tip penetration after being fractured. Second, mechanical fatigue experiments revealed that the increased length in 8% of the N-terminal (Ht-CP) makes the virus particles to crumble ∼10 times slower than the wild type N-terminal CP, indicating enhanced RNA cargo retention. Our results show that the three differentiated N-terminal topologies of the capsid result in distinct cargo release dynamics during mechanical disassembly experiments because of the different interaction with RNA.


Subject(s)
Picobirnavirus , Humans , Capsid Proteins , Capsid , Amino Acid Sequence , RNA
4.
Proc Natl Acad Sci U S A ; 120(42): e2307717120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824526

ABSTRACT

Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.


Subject(s)
Archaeal Viruses , Sulfolobus , Archaeal Viruses/genetics , Archaeal Viruses/chemistry , Capsid/metabolism , Nucleoproteins/genetics , Capsid Proteins/genetics , Genome, Viral , Tomography
5.
Sci Adv ; 9(14): eade9910, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37027464

ABSTRACT

Out of the three core proteins in human adenovirus, protein V is believed to connect the inner capsid surface to the outer genome layer. Here, we explored mechanical properties and in vitro disassembly of particles lacking protein V (Ad5-ΔV). Ad5-ΔV particles were softer and less brittle than the wild-type ones (Ad5-wt), but they were more prone to release pentons under mechanical fatigue. In Ad5-ΔV, core components did not readily diffuse out of partially disrupted capsids, and the core appeared more condensed than in Ad5-wt. These observations suggest that instead of condensing the genome, protein V antagonizes the condensing action of the other core proteins. Protein V provides mechanical reinforcement and facilitates genome release by keeping DNA connected to capsid fragments that detach during disruption. This scenario is in line with the location of protein V in the virion and its role in Ad5 cell entry.


Subject(s)
Adenoviruses, Human , Capsid , Humans , Capsid/metabolism , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Adenoviridae/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Adenoviruses, Human/metabolism
6.
Virology ; 581: 1-7, 2023 04.
Article in English | MEDLINE | ID: mdl-36842268

ABSTRACT

In the infection cycle, viruses release their genome in the host cell during uncoating. Here we use a variety of physicochemical procedures to induce and monitor the in vitro uncoating of ssDNA from individual Minute Virus of Mice (MVM) particles. Our experiments revealed two pathways of genome release: i) filamentous ssDNA appearing around intact virus particles when using gradual mechanical fatigue and heating at moderate temperature (50 °C). ii) thick structures of condensed ssDNA appearing when the virus particle is disrupted by mechanical nanoindentations, denaturing agent guanidinium chloride and high temperature (70 °C). We propose that in the case of filamentous ssDNA, when the capsid integrity is conserved, the genome is externalized through one channel of the capsid pores. However, the disruption of virus particles revealed a native structure of condensed genome. The mechanical analysis of intact particles after DNA strands ejection confirm the stabilization role of ssDNA in MVM.


Subject(s)
Nucleic Acids , Parvoviridae Infections , Parvovirus , Animals , Mice , Cues , Nucleic Acids/metabolism , Parvovirus/metabolism , Capsid Proteins/metabolism , Capsid/metabolism
7.
Colloids Surf B Biointerfaces ; 222: 113136, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36641873

ABSTRACT

Studies of virus adsorption on surfaces with optimized properties have attracted a lot of interest, mainly due to the influence of the surface in the retention, orientation and stability of the viral capsids. Besides, viruses in whole or in parts can be used as cages or vectors in different areas, such as biomedicine and materials science. A key requirement for virus nanocage application is their physical properties, i.e. their mechanical response and the distribution of surface charge, which determine virus-substrate interactions and stability. In the present work we show two examples of viruses exhibiting strong surface interactions on homogeneous hydrophobic surfaces. The surfaces were prepared by titanate assisted organosilanization, a sol-gel spin coating process, followed by a mild annealing step. We show by surface and interface spectroscopies that the process allows trapping triethoxy-octylsilane (OCTS) molecules, exhibiting a hydrophobic alkane rich surface finishing. Furthermore, the surfaces remain flat and behave as more efficient sorptive surfaces for virus particles than mica or graphite (HOPG). Also, we determine by atomic force microscopy (AFM) the mechanical properties of two types of viruses (human adenovirus and reovirus) and compare the results obtained on the OCTS functionalized surfaces with those obtained on mica and HOPG. Finally, the TIPT+OCTS surfaces were validated as platforms for the morphological and mechanical characterization of virus particles by using adenovirus as initial model and using HOPG and mica as standard control surfaces. Then, the same characteristics were determined on reovirus using TIPT+OCTS and HOPG, as an original contribution to the catalogue of physical properties of viral particles.


Subject(s)
Alkanes , Aluminum Silicates , Humans , Spectrum Analysis , Adsorption , Microscopy, Atomic Force/methods , Surface Properties
8.
Small ; 18(28): e2200059, 2022 07.
Article in English | MEDLINE | ID: mdl-35718881

ABSTRACT

Packing biomolecules inside virus capsids has opened new avenues for the study of molecular function in confined environments. These systems not only mimic the highly crowded conditions in nature, but also allow their manipulation at the nanoscale for technological applications. Here, green fluorescent proteins are packed in virus-like particles derived from P22 bacteriophage procapsids. The authors explore individual virus cages to monitor their emission signal with total internal reflection fluorescence microscopy while simultaneously changing the microenvironment with the stylus of atomic force microscopy. The mechanical and electronic quenching can be decoupled by ≈10% each using insulator and conductive tips, respectively. While with conductive tips the fluorescence quenches and recovers regardless of the structural integrity of the capsid, with the insulator tips quenching only occurs if the green fluorescent proteins remain organized inside the capsid. The electronic quenching is associated with the coupling of the protein fluorescence emission with the tip surface plasmon resonance. In turn, the mechanical quenching is a consequence of the unfolding of the aggregated proteins during the mechanical disruption of the capsid.


Subject(s)
Single Molecule Imaging , Viral Proteins , Capsid/chemistry , Capsid Proteins/chemistry , Green Fluorescent Proteins , Microscopy, Atomic Force , Viral Proteins/chemistry
9.
Sci Adv ; 8(6): eabj7795, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35138889

ABSTRACT

Vaults are ubiquitous ribonucleoprotein particles involved in a diversity of cellular processes, with promising applications as nanodevices for delivery of multiple cargos. The vault shell is assembled by the symmetrical association of multiple copies of the major vault protein that, initially, generates half vaults. The pairwise, anti-parallel association of two half vaults produces whole vaults. Here, using a combination of vault recombinant reconstitution and structural techniques, we characterized the molecular determinants for the vault opening process. This process commences with a relaxation of the vault waist, causing the expansion of the inner cavity. Then, local disengagement of amino-terminal domains at the vault midsection seeds a conformational change that leads to the aperture, facilitating access to the inner cavity where cargo is hosted. These results inform a hitherto uncharacterized step of the vault cycle and will aid current engineering efforts leveraging vault for tailored cargo delivery.

10.
Curr Opin Virol ; 52: 112-122, 2022 02.
Article in English | MEDLINE | ID: mdl-34906758

ABSTRACT

Understanding adenovirus assembly and disassembly poses many challenges due to the virion complexity. A distinctive feature of adenoviruses is the large amount of virus-encoded proteins packed together with the dsDNA genome. Cryo-electron microscopy (cryo-EM) structures are broadening our understanding of capsid variability along evolution, but little is known about the organization of the non-icosahedral nucleoproteic core and its influence in adenovirus function. Atomic force microscopy (AFM) probes the biomechanics of virus particles, while simultaneously inducing and monitoring their disassembly in real time. Synergistic combination of AFM with EM shows that core proteins play unexpected key roles in maturation and entry, and uncoating dynamics are finely tuned to ensure genome release at the appropriate time and place for successful infection.


Subject(s)
Adenoviridae , Virus Assembly , Adenoviridae/genetics , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cryoelectron Microscopy , Viral Proteins/metabolism , Virion/chemistry
11.
Acta Biomater ; 135: 534-542, 2021 11.
Article in English | MEDLINE | ID: mdl-34407472

ABSTRACT

The adenovirus (AdV) icosahedral capsid encloses a nucleoprotein core formed by the dsDNA genome bound to numerous copies of virus-encoded, positively charged proteins. For an efficient delivery of its genome, AdV must undergo a cascade of dismantling events from the plasma membrane to the nuclear pore. Throughout this uncoating process, the virion moves across potentially disruptive environments whose influence in particle stability is poorly understood. In this work we analyze the effect of acidic conditions on AdV particles by exploring their mechanical properties, genome accessibility and capsid disruption. Our results show that under short term acidification the AdV virion becomes softer and its genome less accessible to an intercalating dye, even in the presence of capsid openings. The AFM tip penetrates deeper in virions at neutral pH, and mechanical properties of genome-less particles are not altered upon acidification. Altogether, these results indicate that the main effect of acidification is the compaction of the nucleoproteic core, revealing a previously unknown role for chemical cues in AdV uncoating. STATEMENT OF SIGNIFICANCE: Studying the behavior of virus particles under changing environmental conditions is key to understand cell entry and propagation. One such change is the acidification undergone in certain cell compartments, which is thought to play a role in the programmed uncoating of virus genomes. Mild acidification in the early endosome has been proposed as a trigger signal for human AdV uncoating. However, the actual effect of low pH in AdV stability and entry is not well defined. Understanding the consequences of acidification in AdV structure and stability is also relevant to define storage conditions for therapeutic vectors, or design AdV variants resistant to intestinal conditions for oral administration of vaccines.


Subject(s)
Adenoviridae , Capsid , Adenoviridae/genetics , Capsid Proteins , Humans , Hydrogen-Ion Concentration , Virion
12.
ACS Appl Mater Interfaces ; 13(21): 24877-24886, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33960195

ABSTRACT

The encapsulation of an organic dye, 10-phenylphenothiazine (PTH), in the inner cavity of single-walled carbon nanotubes (SWNTs) as a breaking heterogenization strategy is presented. The PTH@oSWNT material was microscopically and spectroscopically characterized, showing intense photoemission when illuminated with visible light at the nanoscale. Thus, PTH@oSWNT was employed as a heterogeneous photocatalyst in single electron transfer dehalogenation reactions under visible light irradiation. The material showed an enhanced photocatalytic activity, achieving turnover numbers as high as 3200, with complete recyclability and stability for more than eight cycles. Computational calculations confirm that electronic communication between both partners is established because, upon illumination, an electron of the excited PTH is transferred from the π system of the molecule to the delocalized π-cloud of the SWNT, thus justifying the enhanced photocatalytic activity.

13.
Acta Biomater ; 122: 263-277, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359294

ABSTRACT

We developed the Fluctuating Nonlinear Spring (FNS) model to describe the dynamics of mechanical deformation of biological particles, such as virus capsids. The theory interprets the force-deformation spectra in terms of the "Hertzian stiffness" (non-linear regime of a particle's small-amplitude deformations), elastic constant (large-amplitude elastic deformations), and force range in which the particle's fracture occurs. The FNS theory enables one to quantify the particles' elasticity (Young's moduli for Hertzian and bending deformations), and the limits of their strength (critical forces, fracture toughness) and deformability (critical deformations) as well as the probability distributions of these properties, and to calculate the free energy changes for the particle's Hertzian, elastic, and plastic deformations, and eventual fracture. We applied the FNS theory to describe the protein capsids of bacteriophage P22, Human Adenovirus, and Herpes Simplex virus characterized by deformations before fracture that did not exceed 10-19% of their size. These nanoshells are soft (~1-10-GPa elastic modulus), with low ~50-480-kPa toughness - a regime of material behavior that is not well understood, and with the strength increasing while toughness decreases with their size. The particles' fracture is stochastic, with the average values of critical forces, critical deformations, and fracture toughness comparable with their standard deviations. The FNS theory predicts 0.7-MJ/mol free energy for P22 capsid maturation, and it could be extended to describe uniaxial deformation of cylindrical microtubules and ellipsoidal cellular organelles.


Subject(s)
Mechanical Phenomena , Nanoparticles , Elastic Modulus , Elasticity , Humans , Nonlinear Dynamics
14.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32938763

ABSTRACT

Despite their diversity, most double-stranded-RNA (dsRNA) viruses share a specialized T=1 capsid built from dimers of a single protein that provides a platform for genome transcription and replication. This ubiquitous capsid remains structurally undisturbed throughout the viral cycle, isolating the genome to avoid triggering host defense mechanisms. Human picobirnavirus (hPBV) is a dsRNA virus frequently associated with gastroenteritis, although its pathogenicity is yet undefined. Here, we report the cryo-electron microscopy (cryo-EM) structure of hPBV at 2.6-Å resolution. The capsid protein (CP) is arranged in a single-shelled, ∼380-Å-diameter T=1 capsid with a rough outer surface similar to that of dsRNA mycoviruses. The hPBV capsid is built of 60 quasisymmetric CP dimers (A and B) stabilized by domain swapping, and only the CP-A N-terminal basic region interacts with the packaged nucleic acids. hPBV CP has an α-helical domain with a fold similar to that of fungal partitivirus CP, with many domain insertions in its C-terminal half. In contrast to dsRNA mycoviruses, hPBV has an extracellular life cycle phase like complex reoviruses, which indicates that its own CP probably participates in cell entry. Using an in vitro reversible assembly/disassembly system of hPBV, we isolated tetramers as possible assembly intermediates. We used atomic force microscopy to characterize the biophysical properties of hPBV capsids with different cargos (host nucleic acids or proteins) and found that the CP N-terminal segment not only is involved in nucleic acid interaction/packaging but also modulates the mechanical behavior of the capsid in conjunction with the cargo.IMPORTANCE Despite intensive study, human virus sampling is still sparse, especially for viruses that cause mild or asymptomatic disease. Human picobirnavirus (hPBV) is a double-stranded-RNA virus, broadly dispersed in the human population, but its pathogenicity is uncertain. Here, we report the hPBV structure derived from cryo-electron microscopy (cryo-EM) and reconstruction methods using three capsid protein variants (of different lengths and N-terminal amino acid compositions) that assemble as virus-like particles with distinct properties. The hPBV near-atomic structure reveals a quasisymmetric dimer as the structural subunit and tetramers as possible assembly intermediates that coassemble with nucleic acids. Our structural studies and atomic force microscopy analyses indicate that hPBV capsids are potentially excellent nanocages for gene therapy and targeted drug delivery in humans.


Subject(s)
Capsid Proteins/chemistry , Capsid/ultrastructure , Cryoelectron Microscopy/methods , Picobirnavirus/genetics , Picobirnavirus/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Genome, Viral , Humans , Models, Molecular , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains , RNA, Double-Stranded , Virion/ultrastructure , Virus Assembly
15.
Proc Natl Acad Sci U S A ; 117(24): 13699-13707, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32467158

ABSTRACT

Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high-resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and noninfectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wild-type (Ad5-wt) particles. Cryoelectron microscopy difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.


Subject(s)
Adenoviruses, Human/metabolism , Nucleocapsid Proteins/metabolism , Virus Assembly , Virus Internalization , Adenoviruses, Human/genetics , Adenoviruses, Human/ultrastructure , Cryoelectron Microscopy , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Protein Binding , Protein Domains
16.
Front Mol Biosci ; 7: 570914, 2020.
Article in English | MEDLINE | ID: mdl-33392252

ABSTRACT

Hygiene and disinfection practices play an important role at preventing spread of viral infections in household, industrial and clinical settings. Although formulations based on >70% ethanol are virucidal, there is a currently a need to reformulate products with much lower alcohol concentrations. It has been reported that zinc can increase the virucidal activity of alcohols, although the reasons for such potentiation is unclear. One approach in developing virucidal formulations is to understand the mechanisms of action of active ingredients and formulation excipients. Here, we investigated the virucidal activity of alcohol (40% w/v) and zinc sulfate (0.1% w/v) combinations and their impact on a human adenovirus (HAdV) using, nucleic acid integrity assays, atomic force microscopy (AFM) and transmission electron microscopy (TEM). We observed no difference in virucidal activity (5 log10 reduction in 60 min) against between an ethanol only based formulation and a formulation combining ethanol and zinc salt. Furthermore, TEM imaging showed that the ethanol only formulation produced gross capsid damage, whilst zinc-based formulation or formulation combining both ethanol and zinc did not affect HAdV DNA. Unexpectedly, the addition of nickel salt (5 mM NiCl2) to the ethanol-zinc formulation contributed to a weakening of the capsid and alteration of the capsid mechanics exemplified by AFM imaging, together with structural capsid damage. The addition of zinc sulfate to the ethanol formulation did not add the formulation efficacy, but the unexpected mechanistic synergy between NiCl2 and the ethanol formulation opens an interesting perspective for the possible potentiation of an alcohol-based formulation. Furthermore, we show that AFM can be an important tool for understanding the mechanistic impact of virucidal formulation.

17.
Nanoscale ; 12(2): 1128-1137, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31850432

ABSTRACT

The assembly of 3-dimensional covalent organic frameworks on the surface of carbon nanotubes is designed and successfully developed for the first time via the hybridization of imine-based covalent organic frameworks (COF-300) and oxidized MWCNTs by one-pot chemical synthesis. The resulting hybrid material ox-MWCNTs@COF exhibits a conformal structure that consists of a uniform amorphous COF layer covering the ox-MWCNT surface. The measurements of individual hybrid nanotube mechanical strength performed with atomic force microscopy provide insights into their stability and resistance. The results evidence a very robust hybrid tubular nanostructure that preserves the benefits obtained from COF, such as CO2 adsorption. Further digestion of the organic structure with aniline enables the study of the interplay between the hybrid interface and its nanomechanics. This new hybrid nanomaterial presents exceptional mechanical and electrical properties, merging the properties of the CNT template and COF-300.

18.
Adv Virus Res ; 105: 161-187, 2019.
Article in English | MEDLINE | ID: mdl-31522704

ABSTRACT

Atomic force microscopy (AFM) probes surface-adsorbed samples at the nanoscale by using a sharp stylus of nanometric size located at the end of a micro-cantilever. This technique can also work in a liquid environment and offers unique possibilities to study individual protein assemblies, such as viruses, under conditions that resemble their natural liquid milieu. Here, I show how AFM can be used to explore the topography of viruses and protein cages, including that of structures lacking a well-defined symmetry. AFM is not limited for imaging and allows the manipulation of individual viruses with force spectroscopy approaches, such as single indentation and mechanical fatigue assays. These pushing experiments deform the protein cages to obtain their mechanical information and can be used to monitor the structural changes induced by maturation or the exposure to different biochemical environments, such as pH variation. We discuss how studying capsid rupture and self-healing events offers insight into virus uncoating pathways. On the other hand, pulling tests can provide information about the virus-host interaction established between the viral fibers and the cell membrane.


Subject(s)
Capsid/chemistry , Capsid/ultrastructure , Microscopy, Atomic Force/methods , Spectrum Analysis/methods , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Biomechanical Phenomena
19.
Nucleic Acids Res ; 47(17): 9231-9242, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31396624

ABSTRACT

Some viruses package dsDNA together with large amounts of positively charged proteins, thought to help condense the genome inside the capsid with no evidence. Further, this role is not clear because these viruses have typically lower packing fractions than viruses encapsidating naked dsDNA. In addition, it has recently been shown that the major adenovirus condensing protein (polypeptide VII) is dispensable for genome encapsidation. Here, we study the morphology and mechanics of adenovirus particles with (Ad5-wt) and without (Ad5-VII-) protein VII. Ad5-VII- particles are stiffer than Ad5-wt, but DNA-counterions revert this difference, indicating that VII screens repulsive DNA-DNA interactions. Consequently, its absence results in increased internal pressure. The core is slightly more ordered in the absence of VII and diffuses faster out of Ad5-VII- than Ad5-wt fractured particles. In Ad5-wt unpacked cores, dsDNA associates in bundles interspersed with VII-DNA clusters. These results indicate that protein VII condenses the adenovirus genome by combining direct clustering and promotion of bridging by other core proteins. This condensation modulates the virion internal pressure and DNA release from disrupted particles, which could be crucial to keep the genome protected inside the semi-disrupted capsid while traveling to the nuclear pore.


Subject(s)
Adenoviridae/genetics , Capsid Proteins/genetics , DNA, Viral/genetics , Viral Core Proteins/genetics , Genome, Viral/genetics , Humans , Viral Proteins/genetics , Virion/genetics , Virus Assembly
20.
Biointerphases ; 14(1): 011001, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30691269

ABSTRACT

The organization of virus-like particles (VLPs) on surfaces is a relevant matter for both fundamental and biomedical sciences. In this work, the authors have tailored surfaces with different surface tension components aiming at finding a relationship with the affinity of the different geometric/surface features of icosahedral P22 VLPs. The surfaces have been prepared by titanate assisted organosilanization with glycidyloxy, amino, and perfluoro silanes. Vibrational and photoelectron spectroscopies have allowed identifying the different functional groups of the organosilanes on the surfaces. Atomic force microscopy (AFM) showed that, irrespective of the organosilane used, the final root mean square roughness remains below 1 nm. Contact angle analyses confirm the effective formation of a set of surface chemistries exhibiting different balance among surface tension components. The study of the adsorption of P22 VLPs has involved the analysis of the dynamics of virus immobilization by fluorescence microscopy and the interpretation of the final VLP orientation by AFM. These analyses give rise to statistical distributions pointing to a higher affinity of VLPs toward perfluorinated surfaces, with a dominant fivefold conformation on this hydrophobic surface, but threefold and twofold symmetries dominating on hydrophilic surfaces. These results can be explained in terms of a reinforced hydrophobic interaction between the perfluorinated surface and the dominating hydrophobic residues present at the P22 pentons.


Subject(s)
Adsorption , Bacteriophage P22/metabolism , Silanes/metabolism , Virosomes/metabolism , Microscopy, Atomic Force , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...